DocumentCode :
3342606
Title :
Robust gradient-based Iterative Learning Control
Author :
Owens, D.H. ; Hätönen, J. ; Daley, S.
Author_Institution :
Dept. of Autom. Control & Syst. Eng., Univ. of Sheffield, Sheffield
fYear :
2007
fDate :
27-29 June 2007
Firstpage :
143
Lastpage :
148
Abstract :
This paper considers the robustness of a gradient-based Iterative Learning Control (ILC) algorithm to ensure monotonic convergence with respect to the mean square value of the error time series. The paper provides necessary and sufficient conditions for robust monotonic convergence and sufficient frequency domain conditions for robust monotonic convergence on finite time intervals.
Keywords :
adaptive control; convergence of numerical methods; gradient methods; iterative methods; learning systems; linear matrix inequalities; mean square error methods; robust control; time series; error time series; iterative learning control; matrix inequalities; mean square value; monotonic convergence; robust gradient-based ILC algorithm; Algorithm design and analysis; Automatic control; Control systems; Convergence; Error correction; Frequency; Iterative algorithms; Robust control; Robustness; Uncertainty; Iterative learning control; parameter optimization; positive-real systems; robust control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multidimensional (nD) Systems, 2007 International Workshop on
Conference_Location :
Aveiro
Print_ISBN :
978-1-4244-1111-5
Electronic_ISBN :
978-1-4244-1112-2
Type :
conf
DOI :
10.1109/NDS.2007.4509565
Filename :
4509565
Link To Document :
بازگشت