Title :
Optimal Communication-Computation Tradeoff for Wireless Multimedia Sensor Network Lifetime Maximization
Author :
Tahir, Muhammad ; Farrell, Ronan
Author_Institution :
Centre for Telecommun. Value Chain Res., Nat. Univ. of Ireland, Maynooth
Abstract :
We address the issue of network lifetime maximization for a special class of wireless sensor networks namely, wireless multi-media sensor networks. High data rates, in these networks at the sensor nodes, compared to the conventional sensor networks and the presence of high temporal correlation in the sampled data make them a suitable candidate for the in-network processing, primarily at the sensor node itself. Using these distinguishing features of wireless multi-media sensor networks to our advantage, we have proposed a framework achieving an optimal tradeoff between communication and computation power consumption leading to network lifetime maximization under the delay quality of service constraints. The distributed implementation of the algorithm realizing the proposed framework is achieved using duality theory. A max-min fairness index based measure of network lifetime maximization is studied as a function of end-to-end delay thresholds. Numerical results show how the total network power consumption is distributed between the communication and the computation power consumption components. The results also provide an insight about the maximum and minimum nodal power consumptions. Our results show that the superior performance in terms of max-min fairness index at higher end-to-end delay thresholds is mainly attributed to the relative lower computation cost compared to the communication cost.
Keywords :
delays; multimedia communication; quality of service; wireless sensor networks; end-to-end delay thresholds; in-network processing; max-min fairness index; optimal communication-computation tradeoff; power consumption; quality of service constraints; sensor nodes; wireless multimedia sensor network lifetime maximization; wireless sensor networks; Computer networks; Delay; Distributed computing; Energy consumption; High performance computing; Multimedia communication; Quality of service; Sensor phenomena and characterization; Wireless communication; Wireless sensor networks;
Conference_Titel :
Wireless Communications and Networking Conference, 2009. WCNC 2009. IEEE
Conference_Location :
Budapest
Print_ISBN :
978-1-4244-2947-9
Electronic_ISBN :
1525-3511
DOI :
10.1109/WCNC.2009.4917866