DocumentCode :
3347823
Title :
AR model parameter estimation: from factor graphs to algorithms
Author :
Korl, Sascha ; Loeliger, Hans-Andrea ; Lindgren, Allen G.
Author_Institution :
Signal and Information Processing Laboratory, ETH Zurich, Switzerland
Volume :
5
fYear :
2004
fDate :
17-21 May 2004
Abstract :
The classic problem of estimating the parameters of an auto-regressive (AR) model is considered from a graphical model viewpoint. A number of practical parameter estimation algorithms - some of them well known, others apparently new - are derived as "summary propagation" in a factor graph. In particular, we demonstrate the joint estimation of AR coefficients, innovation variance, and noise variance.
Keywords :
Kalman filters; Monte Carlo methods; autoregressive processes; graph theory; least mean squares methods; parameter estimation; AR coefficients; AR model parameter estimation; Gaussian AR models; Kalman filters; LMS-type algorithms; autoregressive models; factor graph summary propagation; factor graphs; graphical models; innovation variance; message passing algorithms; noise variance; particle filters; Error correction codes; Gaussian noise; Graphical models; Information processing; Laboratories; Parameter estimation; Signal processing; Signal processing algorithms; State-space methods; Technological innovation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE International Conference on
ISSN :
1520-6149
Print_ISBN :
0-7803-8484-9
Type :
conf
DOI :
10.1109/ICASSP.2004.1327159
Filename :
1327159
Link To Document :
بازگشت