DocumentCode :
334792
Title :
Multiscale autoregressive models and the stochastic realization problem
Author :
Frakt, Austin B. ; Willsky, Alan S.
Author_Institution :
Lab. for Inf. & Decision Syst., MIT, Cambridge, MA, USA
Volume :
1
fYear :
1998
fDate :
1-4 Nov. 1998
Firstpage :
747
Abstract :
We provide a linear-time algorithm for the solution of the multiscale autoregressive (MAR) stochastic realization problem. The MAR framework is a powerful generalization of the classical state-space one. As in the state-space case, to apply the framework, one must first build an appropriate model (i.e., find model parameters). Our focus is on a computationally efficient model realization and, after introducing our approach, we compare it to that of Frakt and Willsky (see International Conference on Acoustics, Speech, and Signal Processing, Seattle, WA, 1998) which is quadratic in problem size.
Keywords :
autoregressive processes; computational complexity; parameter estimation; signal processing; state-space methods; computationally efficient model realization; linear-time algorithm; model parameters; multiscale AR models; multiscale autoregressive stochastic realization problem; optimal multiscale statistical signal processing; quadratic problem size; state-space generalization; Computational modeling; Context modeling; Fuses; Laboratories; Signal processing; Signal processing algorithms; Signal resolution; Statistics; Stochastic processes; Stochastic systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems & Computers, 1998. Conference Record of the Thirty-Second Asilomar Conference on
Conference_Location :
Pacific Grove, CA, USA
ISSN :
1058-6393
Print_ISBN :
0-7803-5148-7
Type :
conf
DOI :
10.1109/ACSSC.1998.750961
Filename :
750961
Link To Document :
بازگشت