DocumentCode :
3348823
Title :
A Bayesian model and Gibbs sampler for hyperspectral imaging
Author :
Rodriguez-Yam, Gabriel A. ; Davis, Richard A. ; Scharf, Louis L.
Author_Institution :
Dept. of Stat., Colorado State Univ., Fort Collins, CO, USA
fYear :
2002
fDate :
4-6 Aug. 2002
Firstpage :
105
Lastpage :
109
Abstract :
In this ongoing work, we propose a Bayesian model that can be used to detect targets in multispectral images when the signals from the materials in the image mix linearly, the noise is Gaussian, and abundance parameters are nonnegative. By using efficient implementations of the Gibbs sampler, the expectation of any measurable functional of the abundance parameters, relative to the posterior distribution, can be computed easily. This general approach can be used to include additional constraints.
Keywords :
Bayes methods; Gaussian noise; image sampling; object detection; spectral analysis; Bayesian model; Gaussian noise; Gibbs sampler; hyperspectral imaging; linear mixing model; multispectral images; nonnegative abundance parameters; posterior distribution; target detection; Bayesian methods; Colored noise; Distributed computing; Gaussian distribution; Gaussian noise; Hyperspectral imaging; Multispectral imaging; Software standards; Statistics; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002
Print_ISBN :
0-7803-7551-3
Type :
conf
DOI :
10.1109/SAM.2002.1191009
Filename :
1191009
Link To Document :
بازگشت