• DocumentCode
    3348823
  • Title

    A Bayesian model and Gibbs sampler for hyperspectral imaging

  • Author

    Rodriguez-Yam, Gabriel A. ; Davis, Richard A. ; Scharf, Louis L.

  • Author_Institution
    Dept. of Stat., Colorado State Univ., Fort Collins, CO, USA
  • fYear
    2002
  • fDate
    4-6 Aug. 2002
  • Firstpage
    105
  • Lastpage
    109
  • Abstract
    In this ongoing work, we propose a Bayesian model that can be used to detect targets in multispectral images when the signals from the materials in the image mix linearly, the noise is Gaussian, and abundance parameters are nonnegative. By using efficient implementations of the Gibbs sampler, the expectation of any measurable functional of the abundance parameters, relative to the posterior distribution, can be computed easily. This general approach can be used to include additional constraints.
  • Keywords
    Bayes methods; Gaussian noise; image sampling; object detection; spectral analysis; Bayesian model; Gaussian noise; Gibbs sampler; hyperspectral imaging; linear mixing model; multispectral images; nonnegative abundance parameters; posterior distribution; target detection; Bayesian methods; Colored noise; Distributed computing; Gaussian distribution; Gaussian noise; Hyperspectral imaging; Multispectral imaging; Software standards; Statistics; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002
  • Print_ISBN
    0-7803-7551-3
  • Type

    conf

  • DOI
    10.1109/SAM.2002.1191009
  • Filename
    1191009