DocumentCode :
3349219
Title :
Semantic segmentation of Polarimetric SAR imagery using Conditional Random Fields
Author :
Yang, Wen ; Zhang, Xun ; Chen, Lijun ; Sun, Hong
Author_Institution :
Sch. of Electron. Inf., Wuhan Univ., Wuhan, China
fYear :
2010
fDate :
25-30 July 2010
Firstpage :
1593
Lastpage :
1596
Abstract :
The paper proposes a fast and accurate semantic segmentation approach for a large Polarimetric SAR (PolSAR) image using Conditional Random Fields (CRFs). It efficiently incorporates the polarimetric signatures, texture and intensity features into a unite CRFs model, and employs a fast max-margin training method for parameters learning. Experiments on RadarSat-2 PolSAR data in Flevoland test site demonstrate that our approach achieves precise segmentation results with a few well-selected training samples.
Keywords :
radar polarimetry; synthetic aperture radar; PolSAR; conditional random field; polarimetric SAR image; semantic segmentation; Computational modeling; Feature extraction; Image segmentation; Labeling; Pixel; Semantics; Training; conditional random fields; polarimetric SAR; semantic segmentation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International
Conference_Location :
Honolulu, HI
ISSN :
2153-6996
Print_ISBN :
978-1-4244-9565-8
Electronic_ISBN :
2153-6996
Type :
conf
DOI :
10.1109/IGARSS.2010.5652378
Filename :
5652378
Link To Document :
بازگشت