• DocumentCode
    3349523
  • Title

    Model parameter selection of support vector machines

  • Author

    Zhao, Mingyuan ; Tang, Ke ; Zhou, Mingtian ; Zhang, Fengli ; Zeng, Ling

  • Author_Institution
    Sch. of Comput. Sci. & Technol., Univ. of Electron. Sci. & Technol. of China, Chengdu
  • fYear
    2008
  • fDate
    21-24 Sept. 2008
  • Firstpage
    1095
  • Lastpage
    1099
  • Abstract
    In order to optimize classification performance of support vector machines, analyzing character of model parameters on support vector machines with Gaussian kernel, using data of Ionosphere Database in UCI repository of machine learning database and electroencephalogram (EEG) experiment data to make and analyze the area search table, a new parametric distribution model is proposed. In order to search optimal points in model parameters of support vector machines, a new genetic algorithm based on parametric distribution model is proposed to improve classification performance of support vector machines remarkably.
  • Keywords
    genetic algorithms; learning (artificial intelligence); pattern classification; support vector machines; Gaussian kernel; classification performance; electroencephalogram experiment data; genetic algorithm; machine learning database; model parameter selection; parametric distribution model; support vector machines; Brain modeling; Databases; Electroencephalography; Genetic algorithms; Ionosphere; Kernel; Machine learning; Performance analysis; Support vector machine classification; Support vector machines; area search table; genetic algorithm; parameters selection; parametric distribution model; support vector machines;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Cybernetics and Intelligent Systems, 2008 IEEE Conference on
  • Conference_Location
    Chengdu
  • Print_ISBN
    978-1-4244-1673-8
  • Electronic_ISBN
    978-1-4244-1674-5
  • Type

    conf

  • DOI
    10.1109/ICCIS.2008.4670757
  • Filename
    4670757