DocumentCode :
3350106
Title :
Efficient SIFT matching from keypoint descriptor properties
Author :
Treen, Geoffrey ; Whitehead, Anthony
Author_Institution :
Carleton Univ. Ottawa, Ottawa, ON, Canada
fYear :
2009
fDate :
7-8 Dec. 2009
Firstpage :
1
Lastpage :
7
Abstract :
A modular approach to finding fast SIFT correspondences in single-image matching applications is proposed. Our algorithm exploits properties of the SIFT descriptor vector to find shortcuts to the most likely matches in a feature set. We are able to converge approximately 15 times faster than a linear search, and, respectively, four and five times faster than both PCA-SIFT and SURF (both of which use descriptor vectors that contain far fewer dimensions than SIFT), at near-equivalent recall and precision performance.
Keywords :
feature extraction; image matching; SIFT descriptor; keypoint descriptor properties; scale invariant feature transform; single-image matching; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Applications of Computer Vision (WACV), 2009 Workshop on
Conference_Location :
Snowbird, UT
ISSN :
1550-5790
Print_ISBN :
978-1-4244-5497-6
Type :
conf
DOI :
10.1109/WACV.2009.5403099
Filename :
5403099
Link To Document :
بازگشت