• DocumentCode
    3363259
  • Title

    Nonparametric image interpolation and dictionary learning using spatially-dependent Dirichlet and beta process priors

  • Author

    Paisley, John ; Zhou, Mingyuan ; Sapiro, Guillermo ; Carin, Lawrence

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA
  • fYear
    2010
  • fDate
    26-29 Sept. 2010
  • Firstpage
    1869
  • Lastpage
    1872
  • Abstract
    We present a Bayesian model for image interpolation and dictionary learning that uses two nonparametric priors for sparse signal representations: the beta process and the Dirichlet process. Additionally, the model uses spatial information within the image to encourage sharing of information within image subregions. We derive a hybrid MAP/Gibbs sampler, which performs Gibbs sampling for the latent indicator variables and MAP estimation for all other parameters. We present experimental results, where we show an improvement over other state-of-the-art algorithms in the low-measurement regime.
  • Keywords
    Bayes methods; image representation; interpolation; learning systems; sampling methods; Bayesian model; Gibbs sampling; MAP estimation; beta process; dictionary learning; nonparametric image interpolation; sparse signal representations; spatially-dependent Dirichlet process; Algorithm design and analysis; Bayesian methods; Dictionaries; Interpolation; Mathematical model; PSNR; Pixel; Bayesian models; Dirichlet process; beta process; dictionary learning; image interpolation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Image Processing (ICIP), 2010 17th IEEE International Conference on
  • Conference_Location
    Hong Kong
  • ISSN
    1522-4880
  • Print_ISBN
    978-1-4244-7992-4
  • Electronic_ISBN
    1522-4880
  • Type

    conf

  • DOI
    10.1109/ICIP.2010.5653350
  • Filename
    5653350