DocumentCode :
3364338
Title :
Nonstationary signal estimation using time-varying ARMA models
Author :
Mrad, R. Ben ; Fassois, S.D. ; Levitt, J.A.
Author_Institution :
Ford Motor Co., Dearborn, MI, USA
fYear :
1994
fDate :
25-28 Oct 1994
Firstpage :
433
Lastpage :
436
Abstract :
A parametric approach for the estimation of nonstationary signals is presented. The approach is based on time-varying autoregressive moving average (TARMA) signal representations. The TARMA model coefficients vary in a deterministically organized way and are estimated using a novel fully linear parameter estimation method. The estimation algorithm is based on the properties of the TARMA models that allow their manipulations using operations restricted to the time domain. It is shown that the estimation method is computationally simple, overcomes local extrema problems associated with nonlinear search procedures, and eliminates the need for initial guesses of the parameter values
Keywords :
autoregressive moving average processes; parameter estimation; signal representation; spectral analysis; time-domain analysis; time-varying systems; TARMA model coefficients; estimation algorithm; linear parameter estimation method; nonstationary signal estimation; signal representations; spectral representation; time domain operations; time-varying ARMA models; time-varying autoregressive moving average; Autoregressive processes; Convergence; Optimization methods; Parameter estimation; Polynomials; Signal generators; Signal processing; Signal representations; Vehicles; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Time-Frequency and Time-Scale Analysis, 1994., Proceedings of the IEEE-SP International Symposium on
Conference_Location :
Philadelphia, PA
Print_ISBN :
0-7803-2127-8
Type :
conf
DOI :
10.1109/TFSA.1994.467321
Filename :
467321
Link To Document :
بازگشت