DocumentCode :
3364808
Title :
Robust low complexity feature tracking
Author :
Mainali, Pradip ; Yang, Qiong ; Lafruit, Gauthier ; Lauwereins, Rudy ; Van Gool, Luc
Author_Institution :
Katholieke Univ. Leuven, Leuven, Belgium
fYear :
2010
fDate :
26-29 Sept. 2010
Firstpage :
829
Lastpage :
832
Abstract :
In this paper, we present the Kanade-Lucas-Tomasi (KLT) tracking algorithm coupled with a varying integration window, which tracks a small subset of feature points to initialize the approximate motion model between images. For the remaining larger subset of the feature points initial tracking location is predicted by using this motion model, thus improving the tracking result. For an image of size 1000×700, the computational cost is reduced by a factor of 9.5 and tracking 500 features with our method runs in only 64 ms on a commodity 2GHz CPU with 1GB RAM.
Keywords :
feature extraction; Kanade-Lucas-Tomasi tracking algorithm; feature points initial tracking; robust low complexity feature tracking; Approximation algorithms; Computational efficiency; Convergence; Prediction algorithms; Robustness; Target tracking; Feature Point; KLT; Tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2010 17th IEEE International Conference on
Conference_Location :
Hong Kong
ISSN :
1522-4880
Print_ISBN :
978-1-4244-7992-4
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2010.5653452
Filename :
5653452
Link To Document :
بازگشت