DocumentCode :
3367865
Title :
Use of neural networks and brownian motion in local posistioning systems
Author :
Rutecki, Maciej ; Kacprzak, Tomasz
Author_Institution :
Tech. Univ. of Lodz, Lodz
fYear :
2008
fDate :
14-17 Sept. 2008
Firstpage :
273
Lastpage :
276
Abstract :
The aim of this paper is to present new method of placing radio stations used for geolocation in indoor applications. It takes advantages of use neural networks, resilience phenomenon, Brownian motion and Monte Carlo method. This allow to significantly reduce time needed to compute optimal position of antennas, while keeping good precision of calculation.
Keywords :
Brownian motion; Monte Carlo methods; indoor radio; neural nets; radio direction-finding; telecommunication computing; Brownian motion; Monte Carlo method; geolocation; indoor radio stations; local posistioning systems; neural networks; resilience phenomenon; Acoustic reflection; Base stations; Brownian motion; Computer vision; Neural networks; Object detection; Performance evaluation; Radiofrequency identification; Resilience; Transponders; Brownian Motion; Geolocation; local positioning systems; neural networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals and Electronic Systems, 2008. ICSES '08. International Conference on
Conference_Location :
Krakow
Print_ISBN :
978-83-88309-47-2
Electronic_ISBN :
978-83-88309-52-6
Type :
conf
DOI :
10.1109/ICSES.2008.4673413
Filename :
4673413
Link To Document :
بازگشت