DocumentCode :
3370859
Title :
A semantic no-reference image sharpness metric based on top-down and bottom-up saliency map modeling
Author :
Zhong, Sheng-Hua ; Liu, Yan ; Liu, Yang ; Chung, Fu-lai
Author_Institution :
Dept. of Comput., Hong Kong Polytech. Univ., Hong Kong, China
fYear :
2010
fDate :
26-29 Sept. 2010
Firstpage :
1553
Lastpage :
1556
Abstract :
This work presents a semantic level no-reference image sharpness/blurriness metric under the guidance of top-down & bottom-up saliency map, which is learned based on eye-tracking data by SVM. Unlike existing metrics focused on measuring the blurriness in vision level, our metric more concerns about the image content and human´s intention. We integrate visual features, center priority, and semantic meaning from tag information to learn a top-down & bottom-up saliency model based on the eye-tracking data. Empirical validations on standard dataset demonstrate the effectiveness of the proposed model and metric.
Keywords :
image processing; learning (artificial intelligence); support vector machines; SVM; bottom-up saliency map modeling; eye-tracking data; semantic level no-reference image blurriness metric; semantic level no-reference image sharpness metric; semantic no-reference image sharpness metric; top-down saliency map modeling; Conferences; Image edge detection; Image quality; Measurement; Pixel; Semantics; Visualization; Image quality assessment; No-reference; Top-down & bottom-up saliency map;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2010 17th IEEE International Conference on
Conference_Location :
Hong Kong
ISSN :
1522-4880
Print_ISBN :
978-1-4244-7992-4
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2010.5653807
Filename :
5653807
Link To Document :
بازگشت