DocumentCode :
3373010
Title :
Competitive chaotic AR(1) model estimation
Author :
Luengo, David ; Pantaleon, Carlos ; Santamaria, Ignacio
Author_Institution :
Departamento de Ingenieria de Comunicaciones, Cantabria Univ., Santander, Spain
fYear :
2001
fDate :
2001
Firstpage :
83
Lastpage :
92
Abstract :
Chaotic signals, signals generated by a nonlinear dynamical system in chaotic state, may be useful models for many natural phenomena. In this paper we show a family of first-order difference equations with autocorrelation function identical to first-order autoregressive processes AR(1). We consider the maximum likelihood (ML) estimator of the model, and an efficient suboptimal method with reduced computational cost. However, for very large data records or on-line model estimation, even the suboptimal algorithm may have an excessive computational cost. In these cases we propose a low-cost competitive model estimation approach using an LMS-like algorithm for model training and adaption. Computer simulations show the good performance of this model estimation procedure
Keywords :
autoregressive processes; digital simulation; maximum likelihood estimation; parameter estimation; performance evaluation; autocorrelation function; competitive chaotic AR(1) model estimation; computer simulations; first-order autoregressive processes; first-order difference equations; low-cost competitive model estimation; maximum likelihood estimator; nonlinear dynamical system; online model estimation; suboptimal method; Autocorrelation; Chaos; Computational efficiency; Difference equations; Maximum likelihood estimation; Neural networks; Nonlinear dynamical systems; Parameter estimation; Signal generators; Signal processing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks for Signal Processing XI, 2001. Proceedings of the 2001 IEEE Signal Processing Society Workshop
Conference_Location :
North Falmouth, MA
ISSN :
1089-3555
Print_ISBN :
0-7803-7196-8
Type :
conf
DOI :
10.1109/NNSP.2001.943113
Filename :
943113
Link To Document :
بازگشت