DocumentCode :
337554
Title :
Two spatio-temporal decorrelation learning algorithms and their application to multichannel blind deconvolution
Author :
Choi, Seungjin ; Cichocki, Andrzej ; Amari, Shun-Ichi
Author_Institution :
Sch. of Electr. & Electron. Eng., Chungbuk Nat. Univ., South Korea
Volume :
2
fYear :
1999
fDate :
15-19 Mar 1999
Firstpage :
1085
Abstract :
We present and compare two different spatio-temporal decorrelation learning algorithms for updating the weights of a linear feedforward network with FIR synapses (MIMO FIR filter). Both standard gradient and the natural gradient are employed to derive the spatio-temporal decorrelation algorithms. These two algorithms are applied to multichannel blind deconvolution task and their performance is compared. The rigorous derivation of algorithms and computer simulation results are presented
Keywords :
FIR filters; MIMO systems; decorrelation; feedforward neural nets; filtering theory; gradient methods; learning (artificial intelligence); signal processing; telecommunication channels; FIR synapses; MIMO FIR filter; computer simulation results; information theory; linear feedforward network; multichannel blind deconvolution; natural gradient; performance; spatio-temporal decorrelation learning algorithms; standard gradient; Application software; Computer simulation; Deconvolution; Decorrelation; Delay estimation; Ear; Equalizers; Finite impulse response filter; MIMO; Matrix decomposition;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference on
Conference_Location :
Phoenix, AZ
ISSN :
1520-6149
Print_ISBN :
0-7803-5041-3
Type :
conf
DOI :
10.1109/ICASSP.1999.759932
Filename :
759932
Link To Document :
بازگشت