DocumentCode :
3376394
Title :
The minimum entropy network
Author :
Brause, Rüdiger W.
Author_Institution :
J.W. Goethe-Univ., Frankfurt, Germany
fYear :
1992
fDate :
10-13 Nov 1992
Firstpage :
85
Lastpage :
92
Abstract :
It is shown that, using as basic building block a linear neuron with an anti-Hebb rule and restricted weights, an asymmetric network which computes the eigenvectors in the ascending order of their corresponding eigenvalues can be built. The conditions for their convergence are obtained and demonstrated by simulations
Keywords :
Hebbian learning; eigenvalues and eigenfunctions; entropy; neural nets; anti-Hebb rule; asymmetric network; convergence; eigenvalues; eigenvectors; linear neuron; minimum entropy network; restricted weights; Autocorrelation; Clouds; Eigenvalues and eigenfunctions; Entropy; Mean square error methods; Neural networks; Neurons; Pattern recognition; Prototypes; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Tools with Artificial Intelligence, 1992. TAI '92, Proceedings., Fourth International Conference on
Conference_Location :
Arlington, VA
Print_ISBN :
0-8186-2905-3
Type :
conf
DOI :
10.1109/TAI.1992.246369
Filename :
246369
Link To Document :
بازگشت