DocumentCode :
3376877
Title :
A prognostic framework for health management of coupled systems
Author :
Sankavaram, Chaitanya ; Kodali, A. ; Pattipati, K. ; Bing Wang ; Azam, Mohammad S. ; Singh, Sushil
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Connecticut, Storrs, CT, USA
fYear :
2011
fDate :
20-23 June 2011
Firstpage :
1
Lastpage :
10
Abstract :
This paper describes a unified data-driven prognostic framework that combines failure time data, static parameter data and dynamic (time-series) data. The approach employs Cox proportional hazards model (Cox PHM) and soft dynamic multiple fault diagnosis algorithm (DMFD) for inferring the degraded state trajectories of components and to estimate their remaining useful life (RUL). This framework takes into account the cross-subsystem fault propagation, a case prevalent in any networked and embedded system. The key idea is to use Cox proportional hazards model to estimate the survival functions of error codes and symptoms (soft test outcomes/prognostic indicators) from failure time data and static parameter data, and use them to infer the survival functions of components via a soft DMFD algorithm. The average remaining useful life and its higher-order central moments (e.g., variance, skewness, kurtosis) can be estimated from these component survival functions. The proposed prognostic framework has the potential to be applicable to a wide variety of systems, ranging from automobiles to aerospace systems.
Keywords :
condition monitoring; fault diagnosis; hazards; remaining life assessment; time series; Cox proportional hazards model; aerospace systems; automobiles; coupled systems; cross subsystem fault propagation; data driven prognostic framework; degraded components state trajectories; dynamic data; failure time data; prognostic health management framework; remaining useful life; soft dynamic multiple fault diagnosis algorithm; static parameter data; time series; Data models; Degradation; Hazards; Heuristic algorithms; Hidden Markov models; Mathematical model; Vehicle dynamics; diagnostic trouble codes (DTCs); dynamic multiple fault diagnosis (DMFD); parameter identifiers (PIDs); proportional hazard model (PHM); repair codes (LCs);
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Prognostics and Health Management (PHM), 2011 IEEE Conference on
Conference_Location :
Montreal, QC
Print_ISBN :
978-1-4244-9828-4
Type :
conf
DOI :
10.1109/ICPHM.2011.6024334
Filename :
6024334
Link To Document :
بازگشت