DocumentCode :
3377673
Title :
Robust hyperspectral detection with algorithm fusion
Author :
Adler-Golden, Steven ; Conforti, Patrick
Author_Institution :
Spectral Sci., Inc.., Burlington, MA, USA
fYear :
2010
fDate :
25-30 July 2010
Firstpage :
4358
Lastpage :
4361
Abstract :
Two simple methods are described for fusing the outputs of hyperspectral rare target detection algorithms to achieve more consistent results across a variety of images and objects of interest. The methods are demonstrated with atmospherically corrected (spectral reflectance) visible/near-infrared/shortwave-infrared and long-wavelength infrared hyperspectral imagery using five different detection algorithms that output generalized likelihood ratio decision statistics. Results are presented for nine test cases.
Keywords :
geophysical image processing; infrared imaging; object detection; sensor fusion; spectral analysis; statistical analysis; algorithm fusion; hyperspectral rare target detection algorithms; long-wavelength infrared hyperspectral imagery; output generalized likelihood ratio decision statistics; robust hyperspectral detection; spectral reflectance; visible/near-infrared/shortwave-infrared; Detection algorithms; Detectors; Hyperspectral imaging; Pixel; Reflectivity; Signal processing algorithms; detection; fusion; hyperspectral; reflectance;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International
Conference_Location :
Honolulu, HI
ISSN :
2153-6996
Print_ISBN :
978-1-4244-9565-8
Electronic_ISBN :
2153-6996
Type :
conf
DOI :
10.1109/IGARSS.2010.5654197
Filename :
5654197
Link To Document :
بازگشت