DocumentCode :
3377729
Title :
A Linear Fusion of the Local Kalman Estimates
Author :
Shin, Vladimir ; Minhas, Rashid ; Shevlyakov, Georgy ; Kim, Kiseon
Author_Institution :
Gwangju Inst. of Sci. & Technol., Gwangju
fYear :
2005
fDate :
21-24 Nov. 2005
Firstpage :
1
Lastpage :
6
Abstract :
We extend our obtained fusion formula yielding an optimal mean square combination of unbiased estimates on the case of an arbitrary number of biased estimates and apply it to fusion of multisensor local estimates. The suboptimal two-stage filter for linear dynamic systems is designed: the local optimal Kalman estimates computed at the first stage are linearly fused at the second stage. Its realization needs a lower memory demand than the optimal Kalman filter. The example exhibits the effect of noise on the performance of fusion of the state estimates based on measurements from different sensors.
Keywords :
Kalman filters; sensor fusion; state estimation; linear dynamic systems; linear fusion; local Kalman estimates; multisensor fusion; optimal mean square combination; state estimation; suboptimal two-stage filter; Data processing; Kalman filters; Noise measurement; Nonlinear filters; Sensor fusion; Sensor systems; Signal processing algorithms; State estimation; Target tracking; Yield estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
TENCON 2005 2005 IEEE Region 10
Conference_Location :
Melbourne, Qld.
Print_ISBN :
0-7803-9311-2
Electronic_ISBN :
0-7803-9312-0
Type :
conf
DOI :
10.1109/TENCON.2005.301042
Filename :
4084968
Link To Document :
بازگشت