DocumentCode
3379532
Title
Crossbar switch matrix for floating-gate programming over large current ranges
Author
Degnan, Brian P. ; Duffy, Christopher J. ; Hasler, Paul E.
Author_Institution
Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
fYear
2010
fDate
May 30 2010-June 2 2010
Firstpage
861
Lastpage
864
Abstract
A floating-gate, cross-bar switch matrix with a novel programming method is presented. Single-polysilicon floating-gate transistors are used to hold a “bit” state programmed with short-channel pFET devices that demonstrate hot-electron injection over a large current range. Hot-electron injection modeling in pFETs is contrasted across various channel lengths and bias currents. Circuit design and physical layout are discussed, and characterization data is presented from a matrix fabricated in a 0.5 μm, scalable CMOS process available through MOSIS.
Keywords
CMOS integrated circuits; field effect transistors; hot electron transistors; integrated circuit design; integrated circuit layout; semiconductor device models; semiconductor switches; MOSIS; bias currents; channel lengths; circuit design; crossbar switch matrix; floating-gate programming method; hot-electron injection modelling; physical layout; scalable CMOS process; short-channel pFET devices; single-polysilicon floating-gate transistors; size 0.5 mum; Circuit synthesis; Energy barrier; MOS capacitors; MOSFET circuits; Nonvolatile memory; Secondary generated hot electron injection; Semiconductor device modeling; Switches; Tunneling; Voltage;
fLanguage
English
Publisher
ieee
Conference_Titel
Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on
Conference_Location
Paris
Print_ISBN
978-1-4244-5308-5
Electronic_ISBN
978-1-4244-5309-2
Type
conf
DOI
10.1109/ISCAS.2010.5537426
Filename
5537426
Link To Document