DocumentCode :
3379916
Title :
A geometric approach to information-theoretic private information retrieval
Author :
Woodruff, David ; Yekhanin, Sergey
Author_Institution :
MIT, Cambridge, MA, USA
fYear :
2005
fDate :
11-15 June 2005
Firstpage :
275
Lastpage :
284
Abstract :
A t-private private information retrieval (PIR) scheme allows a user to retrieve the ith bit of an n-bit string x replicated among k servers, while any coalition of up to t servers learns no information about i. We present a new geometric approach to PIR, and obtain: 1) a t-private k-server protocol with communication O((k2/t) log k n1/(2k - 1)) removing the (t) term of previous schemes. This answers an open question of Ishai and Kushilevitz (1999). 2) A 2-server protocol with O(n13/) communication, polynomial preprocessing, and online work O(n/logr n) for any constant r. This improves the O(n/log2 n) work of Beimel et al. (2000). 3) Smaller communication for instance hiding, PIR with a polylogarithmic number of servers, robust PIR, and PIR with fixed answer sizes. To illustrate the power of our approach, we also give alternative, geometric proofs of some of the best 1-private upper bounds.
Keywords :
communication complexity; data encapsulation; data privacy; database management systems; file servers; information retrieval; information theory; protocols; replicated databases; 1-private upper bound; 2-server protocol; communication complexity; geometric proof; information theory; instance hiding; n-bit string; polynomial preprocessing; private information retrieval; replication; servers; Complexity theory; Cryptography; Indexes; Information retrieval; Polynomials; Privacy; Protocols; Robustness; Spatial databases; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Complexity, 2005. Proceedings. Twentieth Annual IEEE Conference on
ISSN :
1093-0159
Print_ISBN :
0-7695-2364-1
Type :
conf
DOI :
10.1109/CCC.2005.2
Filename :
1443092
Link To Document :
بازگشت