Title :
Blind multi-user detection based on inerference subspace
Author :
Junlin Zhang ; Ling Nie
Author_Institution :
Coll. of Electr. & Inf. Eng., Chongqing Univ. of Sci. & Technol., Chongqing, China
Abstract :
A new blind adaptive MMSE multi-user detection(MUD) based on subspace tracking is presented. The new detector doesn´t employ interference eigenvalue estimation but the interference subspace estimation, and it avoids performance deterioration induced by eigenvalue estimation error. The proposed MUD exploits the normalized orthogonal Oja (NOOja) subspace tracking algorithm for subspace estimation, since it guarantees the orthogonality of the weight matrix spanned by the interference subspace in every iteration, which must be meet in the new detector. The numerical simulation results the proposed MMSE detector has faster convergence rate, better output SIR and BER and lower the computational complexity.
Keywords :
computational complexity; convergence of numerical methods; eigenvalues and eigenfunctions; estimation theory; interference (signal); iterative methods; least mean squares methods; matrix algebra; signal sampling; BER; MUD; NOOja subspace tracking algorithm; SIR; blind adaptive MMSE multiuser detection; computational complexity; convergence rate; eigenvalue estimation error; interference eigenvalue estimation; interference subspace estimation; iteration method; normalized orthogonal Oja subspace tracking algorithm; numerical simulation; performance deterioration avoidance; subspace tracking; weight matrix orthogonality; Convergence; Detectors; Eigenvalues and eigenfunctions; Estimation; Interference; Multiuser detection; Signal to noise ratio; MMSE; blind multi-user detection; interference subspace;
Conference_Titel :
Cognitive Informatics & Cognitive Computing (ICCI*CC), 2013 12th IEEE International Conference on
Conference_Location :
New York, NY
Print_ISBN :
978-1-4799-0781-6
DOI :
10.1109/ICCI-CC.2013.6622289