DocumentCode :
3380378
Title :
Mining hierarchical temporal association rules in a publication database
Author :
Guo-Cheng Lan ; Tzung-Pei Hong ; Pei-Shan Wu ; Tsumoto, Shusaku
Author_Institution :
Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan
fYear :
2013
fDate :
16-18 July 2013
Firstpage :
503
Lastpage :
508
Abstract :
Different from the existing studies, this work presents a new kind of rules with the concept of a hierarchy of time granules, namely hierarchical temporal association rules. The lifespan of an item in a time granule is calculated from the publication time of the item to the end time in the time granule. A three-phase mining framework is proposed to effectively and efficiently find this kind of rules from a temporal database. The experimental results show the performance of the proposed algorithm under the item lifespan definition.
Keywords :
data mining; electronic publishing; temporal databases; hierarchical temporal association rule mining; item lifespan; publication database; publication time; temporal database; three-phase mining framework; time granules; Educational institutions; Electronics packaging; Indexes; Informatics; Data mining; a hierarchy of time granules; association-rule mining; item lifespan; temporal association rules;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cognitive Informatics & Cognitive Computing (ICCI*CC), 2013 12th IEEE International Conference on
Conference_Location :
New York, NY
Print_ISBN :
978-1-4799-0781-6
Type :
conf
DOI :
10.1109/ICCI-CC.2013.6622291
Filename :
6622291
Link To Document :
بازگشت