DocumentCode :
3380998
Title :
A multi-innovation stochastic gradient parameter estimation algorithm for controlled autoregressive ARMA systems based on the data filtering
Author :
Wang, Shijun ; Ding, Rui
Author_Institution :
Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi 214122, China
fYear :
2013
fDate :
23-25 March 2013
Firstpage :
205
Lastpage :
210
Abstract :
This paper decomposes a controlled autoregressive autoregressive moving average (CARARMA) system into two subsystems, uses the data filtering technique to drive a multi-innovation stochastic gradient algorithm for identifying the parameters of each subsystems. The basic idea is to replace the unknown variables in the information vectors with their corresponding estimates. The simulation example shows that the proposed algorithms can work well.
Keywords :
Autoregressive processes; Computational modeling; Least squares approximations; Mathematical model; Parameter estimation; Signal processing algorithms; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Science and Technology (ICIST), 2013 International Conference on
Conference_Location :
Yangzhou
Print_ISBN :
978-1-4673-5137-9
Type :
conf
DOI :
10.1109/ICIST.2013.6747536
Filename :
6747536
Link To Document :
بازگشت