DocumentCode :
3381444
Title :
Signal subspace decomposition of ideal covariance matrices
Author :
Rao, S. Sathyanarayana ; Raman, Rajasekhar
Author_Institution :
Dept. of Electr. Eng., Villanova Univ., PA, USA
fYear :
1992
fDate :
7-9 Oct 1992
Firstpage :
334
Lastpage :
337
Abstract :
Xu and Kailath have proposed (1992) a fast algorithm for signal subspace decomposition that exploits the special matrix structure associated with signal subspace algorithms. This work presents some modifications which eliminate the need to estimate the noise eigenvalue in order to estimate the orthonormal basis of an ideal covariance matrix. The algorithm yields the exact signal subspace and in so doing yields the exact subspace dimension. The modifications presented reduce the computational load by at least a factor of four
Keywords :
array signal processing; eigenvalues and eigenfunctions; matrix algebra; array processing; computational load; ideal covariance matrix; orthonormal basis; signal subspace decomposition; Computational complexity; Convergence; Covariance matrix; Eigenvalues and eigenfunctions; Noise reduction; Optical wavelength conversion; Power system harmonics; Signal processing; System identification; Yield estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal and Array Processing, 1992. Conference Proceedings., IEEE Sixth SP Workshop on
Conference_Location :
Victoria, BC
Print_ISBN :
0-7803-0508-6
Type :
conf
DOI :
10.1109/SSAP.1992.246782
Filename :
246782
Link To Document :
بازگشت