DocumentCode :
3382410
Title :
A log-domain implementation of the Mihalas-Niebur neuron model
Author :
Van Schaik, André ; Jin, Craig ; McEwan, Alistair ; Hamilton, Tara Julia ; Mihalas, Stefan ; Niebur, Ernst
Author_Institution :
Sch. of Electr. & Inf. Eng., Univ. of Sydney, Sydney, NSW, Australia
fYear :
2010
fDate :
May 30 2010-June 2 2010
Firstpage :
4249
Lastpage :
4252
Abstract :
We present an electronic neuron that uses first-order log-domain low-pass filters to implement the Mihalas-Niebur model. The neuron consists of a leaky-integrate-and-fire core and building blocks to implement an adaptive threshold and spike induced currents. Simulation results show that this modular neuron can emulate different spiking behaviours observed in biological neurons.
Keywords :
low-pass filters; neural nets; Mihalas-Niebur neuron model; adaptive threshold; biological neurons; first-order log-domain low-pass filters; leaky-integrate-and-fire core; modular neuron; spike induced currents; Biological system modeling; Biomembranes; Brain modeling; Circuits; Differential equations; Information filtering; Low pass filters; Neurons; Neuroscience; Threshold voltage;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on
Conference_Location :
Paris
Print_ISBN :
978-1-4244-5308-5
Electronic_ISBN :
978-1-4244-5309-2
Type :
conf
DOI :
10.1109/ISCAS.2010.5537563
Filename :
5537563
Link To Document :
بازگشت