DocumentCode :
3386337
Title :
Clustering on a hypercube multicomputer
Author :
Ranka, Sanjay ; Sahni, Sartaj
Author_Institution :
Syracuse Univ., NY, USA
Volume :
ii
fYear :
1990
fDate :
16-21 Jun 1990
Firstpage :
532
Abstract :
Squared-error clustering algorithms for single-instruction multiple-data (SIMD) hypercubes are presented. These algorithms are asymptotically faster than previous algorithms and require less memory per processing element. For a clustering problem with N patterns, M features per pattern, and K clusters, the algorithms complete it in O(K+log NM) steps on NM processor hypercubes. This is optimal up to a constant factor. Experimental results from a commercially available multiple-instruction multiple-data (MIMD) medium-grain hypercube show that the clustering problem can be solved efficiently by the machines
Keywords :
computerised pattern recognition; hypercube networks; parallel algorithms; parallel architectures; MIMD; SIMD; clustering; computerised pattern recognition; hypercube multicomputer; parallel algorithms; Clustering algorithms; Concurrent computing; Extraterrestrial measurements; Hypercubes; Image recognition; Image segmentation; Iterative algorithms; Pattern analysis; Pattern recognition; Virtual manufacturing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 1990. Proceedings., 10th International Conference on
Conference_Location :
Atlantic City, NJ
Print_ISBN :
0-8186-2062-5
Type :
conf
DOI :
10.1109/ICPR.1990.119422
Filename :
119422
Link To Document :
بازگشت