DocumentCode :
3386616
Title :
Variance reduction techniques for Monte Carlo simulations. A parameterizable FPGA approach
Author :
Echeverría, Pedro ; López-Vallejo, Marisa ; Pesquero, Jose María
Author_Institution :
Dept. of Electron. Eng., Univ. Politec. de Madrid, Madrid
fYear :
2008
fDate :
Aug. 31 2008-Sept. 3 2008
Firstpage :
1296
Lastpage :
1299
Abstract :
In this work we present how variance reduction techniques can be applied to Monte Carlo simulations on an FPGA platform. Variance reduction techniques improve the accuracy of Monte Carlo simulations without increasing the number of individual simulations required, and consequently, the time and resources needed. Two techniques, Stratified Sampling and Latin Hypercube, have been implemented with a parameterizable architecture that additionally allows different configurations. To verify the proposed approach we have integrated these techniques on an FPGA Gaussian Random Number Generator, obtaining a complete a hardware accelerator for Monte Carlo simulations.
Keywords :
Monte Carlo methods; field programmable gate arrays; random number generation; Gaussian random number generator; Monte Carlo simulations; hardware accelerator; latin hypercube; parameterizable FPGA approach; stratified sampling; variance reduction techniques; Computational modeling; Consumer electronics; Field programmable gate arrays; Globalization; Hardware; Hypercubes; Monte Carlo methods; Probability distribution; Random number generation; Sampling methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electronics, Circuits and Systems, 2008. ICECS 2008. 15th IEEE International Conference on
Conference_Location :
St. Julien´s
Print_ISBN :
978-1-4244-2181-7
Electronic_ISBN :
978-1-4244-2182-4
Type :
conf
DOI :
10.1109/ICECS.2008.4675097
Filename :
4675097
Link To Document :
بازگشت