DocumentCode :
3388420
Title :
Bayesian Inference for Continuous-Time ARMA Models Driven by Jump Diffusions
Author :
Yang, Gary Ligong ; Godsill, Simon J.
Author_Institution :
Signal Processing and Communications Lab., Cambridge University Engineering Department, Cambridge, CB2 1PZ, UK. ly221@eng.cam.ac.uk
fYear :
2007
fDate :
26-29 Aug. 2007
Firstpage :
99
Lastpage :
103
Abstract :
This paper investigates the problem of Bayesian parameter estimation for continuous-time autoregressive moving average (CARMA) models driven by jump diffusions. Inference is performed through the evaluation of the likelihood function conditional on jump times, and the realized jump sizes are marginalized assuming they are normally distributed. A Markov chain Monte Carlo (MCMC) algorithm is then developed to explore the parameter space based on the conditional likelihood and an assumed prior structure. Finally, simulations are provided to demonstrate the potential of our methods.
Keywords :
Autoregressive processes; Bayesian methods; Diffusion processes; Mechanical systems; Monte Carlo methods; Parameter estimation; Performance evaluation; Signal processing; State-space methods; Stochastic processes; Bayesian inference; Continuous-time autoregressive moving average model; Jump diffusion; Monte Carlo method; Parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing, 2007. SSP '07. IEEE/SP 14th Workshop on
Conference_Location :
Madison, WI, USA
Print_ISBN :
978-1-4244-1198-6
Electronic_ISBN :
978-1-4244-1198-6
Type :
conf
DOI :
10.1109/SSP.2007.4301226
Filename :
4301226
Link To Document :
بازگشت