DocumentCode :
3389322
Title :
Activation function manipulation for fault tolerant feedforward neural networks
Author :
Taniguchi, Yasuyuki ; Kamiura, Naotake ; Hata, Yutaka ; Matsui, Nobuyuki
Author_Institution :
Dept. of Comput. Eng., Himeji Inst. of Technol., Hyogo, Japan
fYear :
1999
fDate :
1999
Firstpage :
203
Lastpage :
208
Abstract :
We propose a learning algorithm to enhance the fault tolerance of feedforward neural networks (NNs for short) by manipulating the gradient of sigmoid activation function of the neuron. For the output layer, we employ the function with the relatively gentle gradient. For the hidden layer we steepen the gradient of function after convergence. The experimental results show that our NNs are superior to NNs trained with other algorithms employing fault injection and the calculation of relevance of each weight to the output error in fault tolerance, learning cycles and time. The gradient manipulation never spoils the generalization ability
Keywords :
fault tolerant computing; feedforward neural nets; generalisation (artificial intelligence); learning (artificial intelligence); activation function manipulation; convergence; fault injection; fault tolerant feedforward neural networks; generalization ability; gradient manipulation; learning algorithm; output error; output layer; sigmoid activation function; Backpropagation algorithms; Computer networks; Convergence; Costs; Electronic mail; Fault tolerance; Feedforward neural networks; Hardware; Neural networks; Neurons;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Test Symposium, 1999. (ATS '99) Proceedings. Eighth Asian
Conference_Location :
Shanghai
ISSN :
1081-7735
Print_ISBN :
0-7695-0315-2
Type :
conf
DOI :
10.1109/ATS.1999.810751
Filename :
810751
Link To Document :
بازگشت