• DocumentCode
    3389649
  • Title

    Hybrid fuzzy-control schemes for robotic systems

  • Author

    Tunstel, E. ; Akbarzadeh-T, M.-R. ; Kumbla, K. ; Jamshidi, M.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., New Mexico Univ., Albuquerque, NM, USA
  • fYear
    1995
  • fDate
    27-29 Aug 1995
  • Firstpage
    171
  • Lastpage
    176
  • Abstract
    Three hybrid fuzzy control schemes for robotics applications are described. The first scheme concentrates on a control architecture which incorporates fuzzy logic theory into the framework of behavior control for mobile robot navigation. The second scheme develops a two-level hierarchical fuzzy control structure for flexible manipulators. It incorporates genetic algorithms (GA) in a learning scheme to adapt to various environmental conditions. The third scheme concentrates on a methodology that uses a neural network (NN) to adapt a fuzzy logic controller (FLC) in manipulator trajectory following tasks
  • Keywords
    fuzzy control; fuzzy neural nets; genetic algorithms; hierarchical systems; neurocontrollers; robots; flexible manipulators; genetic algorithms; hybrid fuzzy control schemes; manipulator trajectory following tasks; mobile robot navigation; neural network; robotic systems; two-level hierarchical fuzzy control structure; Control systems; Fuzzy control; Fuzzy logic; Intelligent robots; Manipulators; Mobile robots; Neural networks; Robot control; Robust control; Service robots;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Control, 1995., Proceedings of the 1995 IEEE International Symposium on
  • Conference_Location
    Monterey, CA
  • ISSN
    2158-9860
  • Print_ISBN
    0-7803-2722-5
  • Type

    conf

  • DOI
    10.1109/ISIC.1995.525055
  • Filename
    525055