• DocumentCode
    3390169
  • Title

    The resolution of a Hartmanis conjecture

  • Author

    Cai, Jin-Yi ; Sivakumar, D.

  • Author_Institution
    Dept. of Comput. Sci., State Univ. of New York, Buffalo, NY, USA
  • fYear
    1995
  • fDate
    23-25 Oct 1995
  • Firstpage
    362
  • Lastpage
    371
  • Abstract
    Building on the recent breakthrough by M. Ogihara (1995), we resolve a conjecture made by J. Hartmanis (1978) regarding the (non) existence of sparse sets complete for P under logspace many-one reductions. We show that if there exists a sparse hard set for P under logspace many-one reductions, then P=LOGSPACE. We further prove that if P has a sparse hard set under many-one reductions computable in NC1 , then P collapses to NC1
  • Keywords
    computational complexity; Hartmanis conjecture; logspace many-one reductions; sparse hard set; sparse sets; Circuits; Complexity theory; Computer science; NP-complete problem; Polynomials;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium on
  • Conference_Location
    Milwaukee, WI
  • ISSN
    0272-5428
  • Print_ISBN
    0-8186-7183-1
  • Type

    conf

  • DOI
    10.1109/SFCS.1995.492492
  • Filename
    492492