DocumentCode :
3391106
Title :
Polyphonic pitch tracking using joint Bayesian estimation of multiple frame parameters
Author :
Walmsley, P.J. ; Godsill, Simon J. ; Rayner, Peter J W
Author_Institution :
Dept. of Eng., Cambridge Univ., UK
fYear :
1999
fDate :
1999
Firstpage :
119
Lastpage :
122
Abstract :
We present a novel approach to pitch estimation and note detection in polyphonic audio signals. We pose the problem in a Bayesian probabilistic framework, which allows us to incorporate prior knowledge about the nature of musical data into the model. We exploit the high correlation between model parameters in adjacent frames of data by explicitly modelling the frequency variation over time using latent variables. Parameters are estimated jointly across a number of adjacent frames to increase the robustness of the estimation against transient events. Individual frames of data are modelled as the sum of harmonic sinusoids. Parameter estimation is performed using Markov chain Monte Carlo (MCMC) methods
Keywords :
Bayes methods; Markov processes; Monte Carlo methods; acoustic signal detection; audio signal processing; correlation methods; harmonic analysis; music; parameter estimation; tracking; transients; Bayesian probabilistic framework; Markov chain Monte Carlo methods; correlation; frequency variation modelling; harmonic sinusoids; joint Bayesian estimation; model parameters; multiple frame parameters; musical data; note detection; parameter estimation; pitch estimation; polyphonic audio signals; polyphonic pitch tracking; transient events; Bayesian methods; Cepstral analysis; Databases; Frequency estimation; Instruments; Parameter estimation; Power harmonic filters; Robustness; Signal processing; Signal resolution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Applications of Signal Processing to Audio and Acoustics, 1999 IEEE Workshop on
Conference_Location :
New Paltz, NY
Print_ISBN :
0-7803-5612-8
Type :
conf
DOI :
10.1109/ASPAA.1999.810864
Filename :
810864
Link To Document :
بازگشت