DocumentCode :
3392316
Title :
Adaptive Fusion Architecture for Context Aware Detection and Classification
Author :
Bell, J. ; Petillot, Y. ; Lebart, K. ; Mignotte, P.Y. ; Coiras, E. ; Rohou, H.
Author_Institution :
Heriot-Watt Univ., Edinburgh
fYear :
2007
fDate :
18-21 June 2007
Firstpage :
1
Lastpage :
6
Abstract :
This paper presents a framework for the fusion of detection and classification algorithms for side-scan imagery. The framework is based on Dempster-Shafer theory of evidence, which permits the fusion of heterogeneous outputs of targets detectors and classifiers. The paper will illustrate how the technique permits the incorporation of contextual information into the decision process, giving more importance to the outputs of those algorithms that perform better in particular mission conditions.
Keywords :
adaptive signal processing; geophysical signal processing; image classification; object detection; oceanographic techniques; sensor fusion; sonar detection; sonar imaging; sonar target recognition; Dempster-Shafer theory of evidence; adaptive fusion architecture; context aware classification; context aware detection; side-scan imagery; sonar detection; target classification; Classification algorithms; Context awareness; Data mining; Detectors; Feature extraction; Object detection; Sonar detection; Underwater tracking; Underwater vehicles; Vehicle detection; classification; detection; fusion; sonar;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
OCEANS 2007 - Europe
Conference_Location :
Aberdeen
Print_ISBN :
978-1-4244-0635-7
Electronic_ISBN :
978-1-4244-0635-7
Type :
conf
DOI :
10.1109/OCEANSE.2007.4302247
Filename :
4302247
Link To Document :
بازگشت