• DocumentCode
    3395280
  • Title

    Bayesian inference model for step-stress accelerated life testing with type-II censoring

  • Author

    Lee, Jinsuk ; Pan, Rong

  • Author_Institution
    Dept. of Ind. Eng., Arizona State Univ., Tempe, AZ
  • fYear
    2008
  • fDate
    28-31 Jan. 2008
  • Firstpage
    91
  • Lastpage
    96
  • Abstract
    In this paper we present a Bayes inference model for a simple step-stress accelerated life test (SSALT) using type-II censored samples. We assume that the failure times at each stress are exponentially distributed with a mean that is a log-linear function of the natural stress level, and derive a likelihood function for the SSALT model under type-II censoring. We integrate the engineering knowledge into the prior distribution of the parameters in log-linear function, and through a Siegel-gamma distribution conjugation we can derive the posterior distribution for the parameters of interest. Applying Bayes approach to SSALT, the statistical precision of parameter inference is improved and the required number of samples is reduced.
  • Keywords
    Bayes methods; exponential distribution; failure analysis; gamma distribution; life testing; Bayesian inference model; SSALT model; Siegel-gamma distribution; exponential distribution; log-linear function; product failure time; product life testing; step-stress accelerated life testing; type-II censored samples; Bayesian methods; Costs; Data analysis; Exponential distribution; Industrial engineering; Knowledge engineering; Life estimation; Life testing; Maximum likelihood estimation; Stress; Bayesian inference; Conjugate prior; Siegel-gamma distribution; Step-stress ALT; Type-II censoring;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Reliability and Maintainability Symposium, 2008. RAMS 2008. Annual
  • Conference_Location
    Las Vegas, NV
  • ISSN
    0149-144X
  • Print_ISBN
    978-1-4244-1460-4
  • Electronic_ISBN
    0149-144X
  • Type

    conf

  • DOI
    10.1109/RAMS.2008.4925776
  • Filename
    4925776