Title :
Battery power efficiency of PPM and FSK in wireless sensor networks
Author :
Tang, Qiuling ; Yang, Liuqing ; Giannakis, Georgios B. ; Qin, Tuanfa
Author_Institution :
Lab. of Modern Acoust., Nanjing Univ., China
Abstract :
In wireless sensor networks (WSNs), sensor nodes are usually battery-powered. Hence, energy efficiency is a critical factor in WSNs. Orthogonal modulations suitable for energy-limited WSNs have been investigated under the assumption that batteries are linear and ideal. However, these analyses are not valid when more realistic nonlinear battery models are considered. Based on a general model integrating WSN transmission modules with realistic battery models, we derive two battery power-conserving schemes for M-ary pulse position modulation (PPM) and frequency shift keying (FSK). We analyze and compare their battery power efficiencies in various wireless channels. Our results reveal that FSK is more power-efficient than PPM in sparse WSNs, while PPM may outperform FSK in dense WSNs. We also show that in sparse WSNs, the power advantage of FSK over PPM is no more than 3 dB; whereas in dense WSNs, the power advantage of PPM over FSK can be significant.
Keywords :
energy conservation; frequency shift keying; pulse position modulation; wireless sensor networks; FSK; M-ary PPM; WSN; battery power efficiency; frequency shift keying; orthogonal modulation; pulse position modulation; wireless sensor network; Batteries; Collaboration; Energy consumption; Energy efficiency; Frequency shift keying; Intelligent networks; Physical layer; Power system modeling; Pulse modulation; Wireless sensor networks;
Conference_Titel :
Military Communications Conference, 2005. MILCOM 2005. IEEE
Print_ISBN :
0-7803-9393-7
DOI :
10.1109/MILCOM.2005.1606004