DocumentCode :
340418
Title :
Unsupervised classification for multi-sensor data in remote sensing using Markov random field and maximum entropy method
Author :
Lee, Sanghoon ; Crawford, Melba M.
Author_Institution :
Dept. of Ind. Eng., KyungWon Univ., South Korea
Volume :
2
fYear :
1999
fDate :
1999
Firstpage :
1200
Abstract :
Employs a multi-stage algorithm that makes use of spatial contextual information in a hierarchical clustering procedure for unsupervised image segmentation. The hierarchical clustering algorithm is based on similarity measures between all pairs of candidates being considered for merging. The multi-stage algorithm involves a local segmentor and a global segmentor. The data from individual sensors are integrated into a set of multidimensional data and it is then applied to the hierarchical clustering algorithm based on linear statistics under the assumption of an additive noise model
Keywords :
Markov processes; image segmentation; remote sensing; Markov random field; additive noise model; global segmentor; hierarchical clustering algorithm; hierarchical clustering procedure; linear statistics; local segmentor; maximum entropy method; multidimensional data; multisensor data; multistage algorithm; remote sensing; spatial contextual information; unsupervised classification; unsupervised image segmentation; Bayesian methods; Clustering algorithms; Digital images; Entropy; Geophysical measurements; Image segmentation; Image sensors; Layout; Markov random fields; Remote sensing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 1999. IGARSS '99 Proceedings. IEEE 1999 International
Conference_Location :
Hamburg
Print_ISBN :
0-7803-5207-6
Type :
conf
DOI :
10.1109/IGARSS.1999.774577
Filename :
774577
Link To Document :
بازگشت