DocumentCode
3404271
Title
A novel neural sliding mode control for multi-link robots
Author
Mu, Xiaojiang ; Ge, Li
Author_Institution
Dept. of Mech. & Electr. Eng., Shenzhen Inst. of Inf. Technol., Shenzhen, China
fYear
2012
fDate
15-17 Aug. 2012
Firstpage
528
Lastpage
532
Abstract
A novel neural sliding mode controller is presented for trajectory tracking control of multi-link robots with external disturbances and uncertain system parameter errors. This approach combines neural networks and global sliding mode control. It adopts a global sliding mode manifold which eliminates reaching mode phase of conventional sliding mode control and robustness exists over all the system process. A radius basis function (RBF) neural network is applied to learn the system parameter errors and external disturbances. So the control system can automatically track the robot parameters and disturbances, and reduces chattering of the controller. Prediction estimation for robot parameters and disturbances is not needed too. Moreover, the system stability is proved by Lyapunov principle. Simulation results verify the validity of the control scheme.
Keywords
Lyapunov methods; learning systems; multivariable control systems; neurocontrollers; radial basis function networks; robots; robust control; tracking; trajectory control; uncertain systems; variable structure systems; Lyapunov principle; RBF neural network; chattering reduction; external disturbance; global sliding mode manifold; multilink robot; neural sliding mode controller; prediction estimation; radius basis function; reaching mode phase; robustness; system parameter error learning; system stability; trajectory tracking control; uncertain system parameter error; Artificial neural networks; Manifolds; Robots; Sliding mode control; Trajectory; chattering; model error; neural networks; sliding mode manifold;
fLanguage
English
Publisher
ieee
Conference_Titel
Automation and Logistics (ICAL), 2012 IEEE International Conference on
Conference_Location
Zhengzhou
ISSN
2161-8151
Print_ISBN
978-1-4673-0362-0
Electronic_ISBN
2161-8151
Type
conf
DOI
10.1109/ICAL.2012.6308134
Filename
6308134
Link To Document