DocumentCode :
3407389
Title :
Determining the parameters in regularized super-resolution reconstruction
Author :
Zibetti, Marcelo V W ; Mayer, Joceli ; Bazan, Fermín S V
Author_Institution :
Dept. of Electr. Eng., Fed. Univ. of Santa Catarina, Florianopolis
fYear :
2008
fDate :
March 31 2008-April 4 2008
Firstpage :
853
Lastpage :
856
Abstract :
We derive a novel method to determine the parameters for regularized super-resolution problems. The proposed approach relies on the Joint Maximum a Posteriori (JMAP) estimation technique. The classical JMAP technique provides solutions at low computational cost, but it may be unstable and presents multiple local minima. We propose to stabilize the JMAP estimation, while achieving a cost function with an unique global solution, by assuming a gamma prior distribution for the hyperparameters. The resulting fidelity is similar to the quality provided by the best methods such as the Evidence, which are computationally expensive. Experimental results illustrate the low complexity and stability of the proposed method.
Keywords :
gamma distribution; image reconstruction; image resolution; maximum likelihood estimation; gamma prior distribution; hyperparameters; joint maximum a posteriori estimation technique; multiple local minima; regularized super-resolution reconstruction; Bayesian methods; Computational efficiency; Cost function; Interpolation; Iterative methods; Motion estimation; Parameter estimation; Pixel; Stability; Strontium; Bayesian estimation; JMAP; Super-resolution; regularization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on
Conference_Location :
Las Vegas, NV
ISSN :
1520-6149
Print_ISBN :
978-1-4244-1483-3
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2008.4517744
Filename :
4517744
Link To Document :
بازگشت