• DocumentCode
    3407769
  • Title

    A nonparametric minimum entropy image deblurring algorithm

  • Author

    Angelino, C.V. ; Debreuve, E. ; Barlaud, M.

  • Author_Institution
    CNRS, Univ. of Nice-Sophia Antipolis, Nice
  • fYear
    2008
  • fDate
    March 31 2008-April 4 2008
  • Firstpage
    925
  • Lastpage
    928
  • Abstract
    In this paper we address the image restoration problem in the variational framework. Classical approaches minimize the Lp norm of the residual and rely on parametric assumptions on the noise statistical model. We relax this parametric hypothesis and we formulate the problem on the basis of nonparametric density estimates. The proposed approach minimizes the residual differential entropy. Experimental results with non gaussian distributions show the interest of such a nonparametric approach. Images quality is evaluated by means of the PSNR measure and SSIM index, more adapted to the human visual system.
  • Keywords
    image denoising; image restoration; minimum entropy methods; human visual system; image restoration problem; images quality; noise statistical model; nonparametric density estimates; nonparametric minimum entropy image deblurring algorithm; residual differential entropy; Deconvolution; Degradation; Entropy; Gaussian distribution; Gaussian noise; Humans; Image restoration; PSNR; Random variables; Visual system; deconvolution; entropy; nonparametric estimation; variational methods;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on
  • Conference_Location
    Las Vegas, NV
  • ISSN
    1520-6149
  • Print_ISBN
    978-1-4244-1483-3
  • Electronic_ISBN
    1520-6149
  • Type

    conf

  • DOI
    10.1109/ICASSP.2008.4517762
  • Filename
    4517762