Title :
Adaptive pose priors for pictorial structures
Author :
Sapp, Benjamin ; Jordan, Chris ; Taskar, Ben
Author_Institution :
Univ. of Pennsylvania, Philadelphia, PA, USA
Abstract :
Pictorial structure (PS) models are extensively used for part-based recognition of scenes, people, animals and multi-part objects. To achieve tractability, the structure and parameterization of the model is often restricted, for example, by assuming tree dependency structure and unimodal, data-independent pairwise interactions. These expressivity restrictions fail to capture important patterns in the data. On the other hand, local methods such as nearest-neighbor classification and kernel density estimation provide non-parametric flexibility but require large amounts of data to generalize well. We propose a simple semi-parametric approach that combines the tractability of pictorial structure inference with the flexibility of non-parametric methods by expressing a subset of model parameters as kernel regression estimates from a learned sparse set of exemplars. This yields query-specific, image-dependent pose priors. We develop an effective shape-based kernel for upper-body pose similarity and propose a leave-one-out loss function for learning a sparse subset of exemplars for kernel regression. We apply our techniques to two challenging datasets of human figure parsing and advance the state-of-the-art (from 80% to 86% on the Buffy dataset), while using only 15% of the training data as exemplars.
Keywords :
inference mechanisms; pose estimation; regression analysis; set theory; shape recognition; exemplar; human figure parsing; image dependent pose prior; kernel regression estimate; learned sparse set; leave one out loss function; pictorial structure inference; query specific pose prior; shape based kernel; Animal structures; Biological system modeling; Costs; Humans; Kernel; Layout; Predictive models; Shape; Testing; Training data;
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on
Conference_Location :
San Francisco, CA
Print_ISBN :
978-1-4244-6984-0
DOI :
10.1109/CVPR.2010.5540182