DocumentCode :
3412109
Title :
Vocal detection in music with support vector machines
Author :
Ramona, Mathieu ; Richard, G. ; David, B.
Author_Institution :
RTL (Ediradio), Paris
fYear :
2008
fDate :
March 31 2008-April 4 2008
Firstpage :
1885
Lastpage :
1888
Abstract :
We propose a statistical learning approach for the automatic detection of vocal regions in a polyphonic musical signal. A support vector model, based on a large feature set, is employed to discriminate accompanied singing voice from pure instrumental regions. We propose a temporal smoothing of the posterior probabilities with a hidden Markov model that helps adapting the segmentation sequence to the precision of the manual annotation. Quantitative results on a copyright- free public musical corpus show a classification accuracy of 82%.
Keywords :
hidden Markov models; music; smoothing methods; speech recognition; support vector machines; automatic detection; copyright- free public musical corpus; hidden Markov model; polyphonic musical signal; posterior probabilities; singing voice; statistical learning; support vector machines; temporal smoothing; vocal detection; Frequency estimation; Hidden Markov models; Instruments; Multiple signal classification; Music; Protocols; Smoothing methods; Speech; Support vector machine classification; Support vector machines; Hidden Markov Models; Support Vector Machines; Vocal detection;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on
Conference_Location :
Las Vegas, NV
ISSN :
1520-6149
Print_ISBN :
978-1-4244-1483-3
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2008.4518002
Filename :
4518002
Link To Document :
بازگشت