DocumentCode :
3412352
Title :
A Novel Adaptive Estimator for Maneuvering Target Tracking
Author :
Chen, Junliang ; Hou, Xiaodong ; Qin, Zheng ; Guo, Ronghua
Author_Institution :
Tsinghua Univ., Beijing
fYear :
2007
fDate :
5-8 Aug. 2007
Firstpage :
3756
Lastpage :
3760
Abstract :
A new method for maneuvering target tracking using "current" statistical model is presented. When tracked target maneuver occurs, "current" statistical model can detect the maneuver immediately and estimate the maneuver value accurately, and then the tracking filter will be compensated correctly and duly by estimated maneuver value. Based on this model, an interacting multiple model (IMM) estimator with Kalman filter (KF) as filter module is developed. For evaluating the performance of the estimator, a maneuvering target scenario is included. Simulation results show that the performance is superior to the traditional IMM algorithms when target maneuver is considered, and the method also yields lower computational load.
Keywords :
Kalman filters; adaptive estimation; target tracking; tracking filters; Kalman filter; adaptive estimation; interacting multiple model estimator; maneuvering target tracking; statistical model; tracking filter; Acceleration; Computational modeling; Covariance matrix; Current measurement; Filters; Gaussian noise; Mechatronics; Motion estimation; State estimation; Target tracking; "current" statistical model; IMM; adaptive estimation; maneuvering target tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Mechatronics and Automation, 2007. ICMA 2007. International Conference on
Conference_Location :
Harbin
Print_ISBN :
978-1-4244-0828-3
Electronic_ISBN :
978-1-4244-0828-3
Type :
conf
DOI :
10.1109/ICMA.2007.4304172
Filename :
4304172
Link To Document :
بازگشت