DocumentCode :
3413554
Title :
Stemming and similarity measures for Arabic Documents Clustering
Author :
Froud, H. ; Benslimane, Rachid ; Lachkar, Abdelhamid ; Ouatik, S.A.
Author_Institution :
L.T.T.I, Univ. Sidi Mohamed Ben, Fez, Morocco
fYear :
2010
fDate :
Sept. 30 2010-Oct. 2 2010
Firstpage :
1
Lastpage :
4
Abstract :
Arabic Documents Clustering is an important task for obtaining good results with the traditional Information Retrieval (TR) systems especially with the rapid growth of the number of online documents present in Arabic language. Document clustering aims to automatically group similar documents in one cluster using different similarity/distance measures. In this paper, we evaluate the impact of the stemming on the Arabic Text Document Clustering with five similarity/distance measures: Euclidean Distance, Cosine Similarity, Jaccard Coefficient, Pearson Correlation Coefficient and Averaged Kullback-Leibler Divergence, for the testing dataset. Our experiments on this latter show that the use of the stemming will not yield good results, but makes the representation of the document smaller and the clustering faster.
Keywords :
information retrieval systems; natural languages; pattern clustering; text analysis; Arabic language; Arabic text document clustering; Euclidean distance; Jaccard coefficient; Pearson correlation coefficient; averaged Kullback-Leibler divergence; cosine similarity; information retrieval system; online document; Clustering algorithms; Correlation; Entropy; Euclidean distance; Information retrieval; Testing; Arabic Language; Arabic Text Clustering; Information Retrieval Systems; Similarity Measures; Stemming;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
I/V Communications and Mobile Network (ISVC), 2010 5th International Symposium on
Conference_Location :
Rabat
Print_ISBN :
978-1-4244-5996-4
Type :
conf
DOI :
10.1109/ISVC.2010.5656417
Filename :
5656417
Link To Document :
بازگشت