DocumentCode :
3416023
Title :
Maintaining interactivity while exploring massive time series
Author :
Chan, Sye-Min ; Xiao, Ling ; Gerth, John ; Hanrahan, Pat
Author_Institution :
Stanford Univ., Stanford, CA
fYear :
2008
fDate :
19-24 Oct. 2008
Firstpage :
59
Lastpage :
66
Abstract :
The speed of data retrieval qualitatively affects how analysts visually explore and analyze their data. To ensure smooth interactions in massive time series datasets, one needs to address the challenges of computing ad hoc queries, distributing query load, and hiding system latency. In this paper, we present ATLAS, a visualization tool for temporal data that addresses these issues using a combination of high performance database technology, predictive caching, and level of detail management. We demonstrate ATLAS using commodity hardware on a network traffic dataset of more than a billion records.
Keywords :
cache storage; data visualisation; query processing; temporal databases; time series; very large databases; ATLAS; ad hoc query; data analysis; data retrieval; distributed query load; hidden system latency; high performance database technology; massive time series dataset; predictive caching; temporal data visualization tool; Costs; Data analysis; Data visualization; Delay; Hardware; Information retrieval; Telecommunication traffic; Time series analysis; Visual analytics; Visual databases; D.2.11 [Software Engineering]: Software Architectures—Domain-specific architectures; H.5.2 [Information Interfaces And Presentation]: User Interface—Graphical user interfaces (GUI); K.4.0 [Information Systems Applications]: General;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Visual Analytics Science and Technology, 2008. VAST '08. IEEE Symposium on
Conference_Location :
Columbus, OH
Print_ISBN :
978-1-4244-2935-6
Type :
conf
DOI :
10.1109/VAST.2008.4677357
Filename :
4677357
Link To Document :
بازگشت