Title :
Interactive poster: Visual data mining of unevenly-spaced event sequences
Author :
Godwin, Alex ; Chang, Remco ; Kosara, Robert ; Ribarsky, William
Author_Institution :
Visualization Center, Univ. of North Carolina at Charlotte, Charlotte, NC
Abstract :
We present a process for the exploration and analysis of large databases of events. A typical database is characterized by the sequential actions of a number of individual entities. These entities can be compared by their similarities in sequence and changes in sequence over time. The correlation of two sequences can provide important clues as to the possibility of a connection between the responsible entities, but an analyst might not be able to specify the type of connection sought prior to examination. Our process incorporates extensive automated calculation and data mining but permits diversity of analysis by providing visualization of results at multiple levels, taking advantage of human intuition and visual processing to generate avenues of inquiry.
Keywords :
data analysis; data mining; data visualisation; very large databases; visual databases; data analysis; data visualization; human intuition; interactive poster; large database exploration; unevenly-spaced event sequence; visual data mining; visual processing; Data analysis; Data mining; Data visualization; Displays; Electronic mail; Feedback; Humans; Motion pictures; Sorting; Visual databases;
Conference_Titel :
Visual Analytics Science and Technology, 2008. VAST '08. IEEE Symposium on
Conference_Location :
Columbus, OH
Print_ISBN :
978-1-4244-2935-6
DOI :
10.1109/VAST.2008.4677379