DocumentCode :
3416676
Title :
Maximum a-posteriori estimation in linear models with a random Gaussian model matrix: A Bayesian-EM approach
Author :
Nevat, Ido ; Peters, Gareth W. ; Yuan, Jinhong
Author_Institution :
Sch. of Electr. Eng. & Telecommun., Univ. of NSW, Kensington, NSW
fYear :
2008
fDate :
March 31 2008-April 4 2008
Firstpage :
2889
Lastpage :
2892
Abstract :
This paper considers the problem of Bayesian estimation of a Gaussian vector in a linear model with random Gaussian uncertainty in the mixing matrix. The maximum a-posteriori estimator is derived for this model using the Bayesian expectation-maximization. It is demonstrated that the solution forms an elegant and simple iteration which can be easily implemented. Finally, the estimator developed is considered in the context of near-Gaussian-digitally modulated signals under channel uncertainty, where it is shown that the MAP estimator outperforms the standard linear MMSE estimator in terms of mean square error (MSE) and bit error rate (BER).
Keywords :
Gaussian processes; matrix algebra; maximum likelihood estimation; vectors; Bayesian estimation; Gaussian vector; MAP estimator; MMSE estimator; bit error rate; channel uncertainty; linear models; maximum a posteriori estimation; mean square error; mixing matrix; random Gaussian model matrix; random Gaussian uncertainty; Bayesian methods; Bit error rate; Forward error correction; Mathematical model; Mathematics; Maximum a posteriori estimation; Mean square error methods; Statistics; Uncertainty; Vectors; Bayesian EM; MAP estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on
Conference_Location :
Las Vegas, NV
ISSN :
1520-6149
Print_ISBN :
978-1-4244-1483-3
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2008.4518253
Filename :
4518253
Link To Document :
بازگشت