Title :
Appearance tracking by transduction in surveillance scenarios
Author :
Coppi, D. ; Calderara, Simone ; Cucchiara, Rita
Author_Institution :
DII, Univ. of Modena & Reggio Emilia, Modena, Italy
fDate :
Aug. 30 2011-Sept. 2 2011
Abstract :
We propose a formulation of people tracking problem as a Transductive Learning (TL) problem. TL is an effective semi-supervised learning technique by which many classification problems have been recently reinterpreted as learning labels from incomplete datasets. In our proposal the joint exploitation of spectral graph theory and Riemannian manifold learning tools leads to the formulation of a robust approach for appearance based tracking in Video Surveillance scenarios. The key advantage of the presented method is a continuously updated model of the tracked target, used in the TL process, that allows to on-line learn the target visual appearance and consequently to improve the tracker accuracy. Experiments on public datasets show an encouraging advancement over alternative state-of the-art techniques.
Keywords :
object tracking; video surveillance; Riemannian manifold learning tools; TL process; semisupervised learning technique; spectral graph theory; surveillance scenario; target visual appearance tracking; video surveillance; Covariance matrix; Eigenvalues and eigenfunctions; Feature extraction; Laplace equations; Manifolds; Proposals; Target tracking;
Conference_Titel :
Advanced Video and Signal-Based Surveillance (AVSS), 2011 8th IEEE International Conference on
Conference_Location :
Klagenfurt
Print_ISBN :
978-1-4577-0844-2
Electronic_ISBN :
978-1-4577-0843-5
DOI :
10.1109/AVSS.2011.6027309