Title :
Circular regression using Bayesian unwrapping
Author :
Morelande, Mark R.
Author_Institution :
Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Melbourne, VIC
fDate :
March 31 2008-April 4 2008
Abstract :
Circular data arise in a number of biological and physical applications. Circular regression refers to the study of the dependence of a circular response variable on a collection of explanatory variables. In this paper the circular response variable is modelled as a wrapped Gaussian process. Previously, estimation with wrapped processes has been performed used complicated iterative optimisation or random sampling techniques. The recursive Bayesian algorithm proposed here is simple to implement and computationally economical by comparison. The proposed algorithm is applied to phase parameter estimation.
Keywords :
Bayes methods; Gaussian processes; iterative methods; random processes; regression analysis; Bayesian unwrapping; circular regression; circular response variable; iterative optimisation; phase parameter estimation; random sampling; recursive Bayesian algorithm; wrapped Gaussian process; Bayesian methods; Biological system modeling; Data engineering; Gaussian processes; Iterative algorithms; Laboratories; Linear regression; Monte Carlo methods; Parameter estimation; Sampling methods; Bayes procedure; Parameter estimation;
Conference_Titel :
Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on
Conference_Location :
Las Vegas, NV
Print_ISBN :
978-1-4244-1483-3
Electronic_ISBN :
1520-6149
DOI :
10.1109/ICASSP.2008.4518391