DocumentCode :
3420180
Title :
A (μ, λ) evolutionary and particle swarm hybrid algorithm, with an application to dinosaur gait optimization
Author :
Matsumura, Yoshiyuki ; Kobayashi, Akihiro ; Sugiyama, Kiyotaka ; Pataky, Todd ; Yasuda, Toshiyuki ; Ohkura, Kazuhiro ; Sellers, Bill
Author_Institution :
Shinshu Univ., Nagano, Japan
fYear :
2013
fDate :
13-13 July 2013
Firstpage :
89
Lastpage :
93
Abstract :
A hybrid evolutionary algorithm based on (μ, λ) evolutionary algorithms and particle swarm optimization is proposed for the numerical optimization problems. In order to find out the performance of the hybrid, the computer experiment is tested on dinosaur´s gait generation problem. Experimental results show that hybrid optimization finds maximum fitness and is faster in the first phase.
Keywords :
biology; evolutionary computation; particle swarm optimisation; (μ,λ) evolutionary algorithm; dinosaur gait generation problem; dinosaur gait optimization; numerical optimization problems; particle swarm algorithm; Dinosaurs; Muscles; Optimization; Particle swarm optimization; Sociology; Statistics; (μ, λ) evolutionary algorithms and particle swarm optimization; A hybrid evolutionary algorithm; dinosaur´s gait generation problem;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence & Applications (IWCIA), 2013 IEEE Sixth International Workshop on
Conference_Location :
Hiroshima
ISSN :
1883-3977
Print_ISBN :
978-1-4673-5725-8
Type :
conf
DOI :
10.1109/IWCIA.2013.6624791
Filename :
6624791
Link To Document :
بازگشت