Title :
A (μ, λ) evolutionary and particle swarm hybrid algorithm, with an application to dinosaur gait optimization
Author :
Matsumura, Yoshiyuki ; Kobayashi, Akihiro ; Sugiyama, Kiyotaka ; Pataky, Todd ; Yasuda, Toshiyuki ; Ohkura, Kazuhiro ; Sellers, Bill
Author_Institution :
Shinshu Univ., Nagano, Japan
Abstract :
A hybrid evolutionary algorithm based on (μ, λ) evolutionary algorithms and particle swarm optimization is proposed for the numerical optimization problems. In order to find out the performance of the hybrid, the computer experiment is tested on dinosaur´s gait generation problem. Experimental results show that hybrid optimization finds maximum fitness and is faster in the first phase.
Keywords :
biology; evolutionary computation; particle swarm optimisation; (μ,λ) evolutionary algorithm; dinosaur gait generation problem; dinosaur gait optimization; numerical optimization problems; particle swarm algorithm; Dinosaurs; Muscles; Optimization; Particle swarm optimization; Sociology; Statistics; (μ, λ) evolutionary algorithms and particle swarm optimization; A hybrid evolutionary algorithm; dinosaur´s gait generation problem;
Conference_Titel :
Computational Intelligence & Applications (IWCIA), 2013 IEEE Sixth International Workshop on
Conference_Location :
Hiroshima
Print_ISBN :
978-1-4673-5725-8
DOI :
10.1109/IWCIA.2013.6624791